粉体|石英网

微信扫一扫

微信小程序
天下好货一手掌握

扫一扫关注

扫一扫微信关注
天下好货一手掌握

美国麦克仪器钟华博士解读粉体特性表征

   2018-01-27 3940
导读

对于不同的应用领域而言,其对粉体的特性关注点也不尽相同,测量方法很难详尽描述。为了帮助粉体行业从业人员更加深刻地了解粉

        对于不同的应用领域而言,其对粉体的特性关注点也不尽相同,测量方法很难详尽描述。为了帮助粉体行业从业人员更加深刻地了解粉体特性表征手段等技术,“2017第二届全国粉体检测与评价技术应用交流会暨实战培训班”将于今年12月27日-29日在广东省珠海市隆重举行,麦克默瑞提克(上海)仪器有限公司市场应用部经理钟华博士也将应邀分享题为“全面认识粉体特性表征的手段与应用实践”的报告。我们期待与您在会场面对面交流,共同探讨促进粉体特性表征的手段与应用发展。

粉体的特性包括颗粒物性和颗粒集合体的物性,其主要包括以下几方面内容:1.几何特性(比表面和孔隙度、孔径与孔径分布、孔容等);2.物理性能(真密度、堆积密度、骨架密度等);3.表面特性(表面活性、表面酸性等);4.力学特性(压缩性、成型性、流动性等)。这些特性在一定程度上会影响粉体的成型加工及后期应用。因此,在生产及研究过程中需要采用合适的手段,准确地测定材料表征。

本文将就无机粉体材料较为常见的比表面积和孔隙度、物理性能、表面特性、力学特性等粉体材料特性的表征手段做简要分析。

1、比表面积和孔径

比表面积和孔径是影响固体材料的质量和性能的物理性质。基于两种材料的物理表面积变化,相同物理尺寸的材料也会呈现完全不同的性能表现。比表面积测量是一种用于包括催化剂、分子筛、MOF材料、电池、吸附剂、人工骨、药物、金属粉末为增材制造与各种各样的其他应用和行业的重要分析法。

利用物理吸附原理可以测定粉末对气体(或液体蒸汽)的吸附量,从而得到材料的比表面积和孔结构信息,是最常用的微孔和介孔材料的表征方法。物理吸附在化学工业、石油加工工业、农业、医药工业、环境保护等领域有广泛的应用。

分析手段:气体吸附法



美国麦克仪器钟华博士解读粉体特性表征

ASAP 2020 Plus系列全自动比表面与孔隙度分析仪(气体吸附仪)

2、表面特性

对于催化剂的结构设计和性能优化而言,需要对催化材料的比表面和表面化学深入的了解。化学吸附法被用来测定某种催化剂促进理想反应的效率,和检测经过一段时间的催化活性/再生的降解。化学吸附是粉体表面和被吸附物之间的化学键力起作用的结果,常被用于研究催化剂活性位的性质。活性位与载体之间的作用以及测定负载金属的分散度、金属表面积或颗粒大小等。

分析手段:化学吸附分析法,包括静态容量法和动态(流动气体法)技术法

3、密度测试

粉体的密度是指单位体积粉体的质量。粉体具有一定的流动特性,粉体的密度对粉体的流动性影响巨大,故研究粉体的密度这一特性,这对粉体加工、输送、包装、存储等方面都具有重要意义。粉体的密度根据所指的体积不同分为:真密度、骨架密度和堆积密度等。

分析手段:气体置换法



美国麦克仪器钟华博士解读粉体特性表征

AccuPyc II 1340系列全自动气体置换法真密度仪

4、压汞法测试

压汞法,又称汞孔隙率法,其原理是基于汞对一般固体不湿润,界面张力抵抗其进入孔中,欲使汞进入孔必须施加外部压力。压汞法可得到部分介孔和大孔粉体的很多重要物理特性,如孔结构信息(孔径、孔容、孔面积等)、孔隙率、迂曲度、渗透性、压缩性、孔喉比、分形维数等。

分析手段:压汞法



美国麦克仪器钟华博士解读粉体特性表征

AutoPore V系列高性能全自动压汞仪

美国麦克仪器公司

美国麦克仪器公司是世界上第一家将自动表面积分析仪、压汞仪以及沉降式粒度分析仪投放市场的公司。自1962年成立以来,美国麦克仪器公司因其在比表面积与孔隙度分析、压汞分析技术、各种密度测试,化学吸附分析与微型催化反应研究众多领域技术研究的前沿性及创新性,始终保持着细微颗粒分析仪器领域的世界领先地位。

美国麦克仪器产品在1979年进入中国市场,成为中美建交后最早进入中国市场的分析仪器。在为中国用户服务30多年后,于2011年3月在上海成立了麦克默瑞提克(上海)仪器有限公司,专业为中国市场提供美国麦克仪器公司的产品。公司总部设在上海,并在北京、广州分别设有办公室,并设有应用实验室提供各类仪器的演示与操作培训并提供对外做样服务,为广大用户提供完整的实验室解决方案与疑难样品的分析。
 
(文/小编)
 
反对 0 举报 0 收藏 0 打赏 0 评论 0
0相关评论
免责声明
• 
本文为小编原创作品,作者: 小编。欢迎转载,转载请注明原文出处:https://www.pownet.com.cn/news/show-7993.html 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们。